Towards a Deeper Understanding of Training Quantized Neural Networks
نویسندگان
چکیده
Training neural networks with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memory capacity, and power consumption. Numerous recent publications have studied methods for training quantized networks, but these studies have been purely experimental. In this work, we investigate the theory of training quantized neural networks by analyzing the convergence properties of some commonly used methods. Our main result shows that training algorithms that exploit high-precision representations have an important annealing property that purely quantized training methods lack, which explains many of the observed empirical differences between these types of algorithms.
منابع مشابه
Training Quantized Nets: A Deeper Understanding
Currently, deep neural networks are deployed on low-power portable devices by first training a full-precision model using powerful hardware, and then deriving a corresponding lowprecision model for efficient inference on such systems. However, training models directly with coarsely quantized weights is a key step towards learning on embedded platforms that have limited computing resources, memo...
متن کاملBinaryRelax: A Relaxation Approach For Training Deep Neural Networks With Quantized Weights
We propose BinaryRelax, a simple two-phase algorithm, for training deep neural networks with quantized weights. The set constraint that characterizes the quantization of weights is not imposed until the late stage of training, and a sequence of pseudo quantized weights is maintained. Specifically, we relax the hard constraint into a continuous regularizer via Moreau envelope, which turns out to...
متن کاملMinimum Energy Quantized Neural Networks
This work targets the automated minimum-energy optimization of Quantized Neural Networks (QNNs) networks using low precision weights and activations. These networks are trained from scratch at an arbitrary fixed point precision. At iso-accuracy, QNNs using fewer bits require deeper and wider network architectures than networks using higher precision operators, while they require less complex ar...
متن کاملAdvances in Technology-based Education: towards a Knowledge Based Society
As artificial neural networks (ANNs) become increasingly popular, significant efforts are made to teach students this attractive paradigm. Today, teaching artificial neural networks is inevitable in machine learning courses. Having this in mind, we designed an educational interactive software system to foster students' understanding of the topic. By developing this system, we were guided by the...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017